Monthly Archives: May 2015

GEOSTRUCT, a program for investigative geometry

I have been developing this computer software / program / application for some years now, and it is now accessible as a web page, to run in your browser.

It provides basic geometric construction facilities, with lines, points and circles, from which endless possibilities follow.

Just try it out, it’s free.

Click on this or copy and paste for later :

.Here are some of the basic features, and examples of more advanced constructions, almost all based on straightedge and compass, from “make line pass through a point” to “intersection of two circles”, and dynamic constructions with rolling and rotating circles.

help pic 1
Two lines, with points placed on them
help pic 3
Three random lines with two points of intersection generated
help pic 6
Five free points, three generated circles and a center point
help pic 7
Three free points, connected as point pairs, medians generated
help pic 5
Two free circles and three free points, point pairs and centers generated
gif line and circle
GIF showing points of intersection of a line with a circle
hypocycloid locus
Construction for locus of hypocycloid
circle in a segment
GIF showing a dilation (stretch) in the horizontal direction
gif piston cylinder
Piston and flywheel
gif touching2circles
Construction for circle touching two circles
gif parabola
Construction for the locus of a parabola, focus-directrix definition.






1 Comment

Filed under education, geometry, math, operations, teaching

Maths(UK) is full of surprises

The radical axis theorem
radical axis theoremradical axis theorem2
How come that after 55 or so years of involment with math this came as a big surprise !!!!!


Filed under education, geometry

Duality, fundamental and profound, but here’s a starter for you.

Duality, how things are connected in unexpected ways. The simplest case is that of the five regular Platonic solids, the tetrahedron, the cube, the octahedron, the dodecahedron and the icosahedron. They all look rather different, BUT…..

take any one of them and find the mid point of each of the faces, join these points up, and you get one of the five regular Platonic solids. Do it to this new one and you get back to the original one. Calling the operation “Doit” we get

tetrahedron –Doit–> tetrahedron –Doit–> tetrahedron
cube –Doit–> octahedron –Doit–> cube
dodecahedron –Doit–> icosahedron –Doit–> dodecahedron

The sizes may change, but we are only interested in the shapes.

This is called a Duality relationship, in which the tetrahedron is the dual of itself, the cube and octahedron are duals of each other, and the dodecahedron and icosahedron are also duals of each other.

Now we will look at lines and points in the x-y plane.

3x – 2y = 4 and y = (3/2)x + 2 and 3x – 2y – 4 = 0 are different ways of describing the same line, but there are many more. We can multiply every coefficient, including the constant, by any number not 0 and the result describes the same line, for example 6x – 4y = 8, or 0.75x – 0.5y = 1, or -0.75x + 0.5y + 1 = 0

This means that a line can be described entirely by two numbers, the x and the y coefficients found when the line equation is written in the last of the forms given above. Generally this is ax + by + 1 = 0

Now any point in the plane needs two numbers to specify it, the x and the y coordinates, for example (2,3)

So if a line needs two numbers and a point needs two numbers then given two numbers p and q I can choose to use then to describe a point or a line. So the numbers p and q can be the point (p,q) or the line px + qy + 1 = 0

The word “dual” is used in this situation. The point (p,q) is the dual of the line px + qy + 1 = 0, and vice versa.

dual of a rotating line cleaned up1

The line joining the points C and D is dual to the point K, in red.  The line equation is 2x + y = 3, and we rewrite it in the “standard” form as  -0.67x – 0.33y +1 = 0  so we get  (-0.67, -0.33) for the coordinates of the dual point K.

A quick calculation (using the well known formula) shows that the distance of the line from the origin multiplied by the distance of the point from the origin is a constant (in this case 1).

The second picture shows the construction of the dual point.

dual of a rotating line construction1

What happens as we move the line about ? Parallel to itself, the dual point moves out and in.

More interesting is what happens when we rotate the line around a fixed point on the line:

gif duality rotating line

The line passes through the fixed point C.  The dual point traces out a straight line, shown in green.

This can be interpreted as “A point can be seen as a set of concurrent lines”, just as a line can be seen as a set of collinear points (we have fewer problems with the latter).

It gets more interesting when we consider a curve. There are two ways of looking at a curve, one as a (fairly nicely) organized set of points ( a locus), and the other as a set of (fairly nicely) arranged lines (an envelope).

A circle is a set of points equidistant from a central point, but it is also the envelope of a set of lines equidistant from a central point (the tangent lines).

So what happens when we look for the dual of a circle? We can either find the line dual to each point on the circle, or find the point dual to each tangent line to the circle. Here’s both:

dual of a circle4

In this case the circle being dualled is the one with center C, and the result is a hyperbola, shown in green.  The result can be deduced analytically, but it is a pain to do so.

dual of a circle3

The hyperbola again.  It doesn’t look quite perfect, probably due to rounding errors.

The question remains – If I do the dualling operation on the hyperbola, will I get back to the circle ?

Also, why a hyperbola and not an ellipse ? Looking at what is going on suggests that if the circle to be dualled has the origin inside then we will get an ellipse. This argument can be made more believable with a little care !

If you get this far and want more, try this very heavy article:


Filed under geometry, math, teaching

Tom Loveless: Why the Common Core Won’t Make a Difference

This much is so obvious, except to those who have no idea about teaching and learning. Pity they are the ones making the decisions.

Diane Ravitch's blog

The odd theory of the Common Core standards is that if everyone has exactly the same curriculum and the same standards, everyone will learn the same “stuff” and progress at the same rate; and as a result, everyone will have the same results, and the achievement gap will close. If this were true, every child who had the same teachers and the same classes in the same school would have identical outcomes, but they don’t.

In 2012, Tom Loveless of the Brookings Institution wrote an analysis of the Common Core standards and concluded that they would have little effect on achievement. Not because the standards are good or bad, but because standards alone don’t raise achievement, nor, I might add, do tests, which measure achievement, as thermometers measure body temperature without changing it.

Loveless summarizes his 2012 findings here.

He writes:

“The 2012 Brown Center Report on American Education…

View original post 366 more words

Leave a comment

Filed under Uncategorized

What is Algebra really for ?

An example tells a good tale.

Translation of a line in an x-y coordinate system:

Take a line  y = 2x -3, and translate it by 4 up and 5 to the right.

Simple approach : The point P = (2, 1) is on the line (so are some others!). Let us translate the point to get Q = (2+5, 1+4), which is Q = (7, 5), and find the line through Q parallel to the original line.  The only thing that changes is the c value, so the new equation is  y = 2x + c, and it must pass through Q.  So we require  5 = 14 + c, giving the value of c as -9.

Not much algebra there, but a horrible question remains – “What happened to all the other points on the line ?”

We try a more algebraic approach – with any old line  ax + by + c = 0, and any old translation, q up and p to the right.

First thing is to find a point on the line – “What ? We don’t know ANYTHING about the line.”

This is where algebra comes to the rescue. Let us suppose (state) that a point P = (d, e) IS on the line.

Then ad + be + c = 0

Now we can move the point P to Q = (d + p, e + q)  (as with the numbers earlier), and make the new line pass through this point:  This requires a new constant c (call it newc) and we then have  a(d + p) + b(e + q) + ‘newc’ = 0

Expand the parentheses (UK brackets, and it’s shorter) to get  ad + ap + be + bq + ‘newc’ = 0

Some inspired rearranging gives  ‘newc’ = -ap – bq – ad – be, which is equal to -(ap + bq) – (ad + be)

“Why did you do that last step ?” – “Because I looked back a few lines and figured that  (ad + be) = -c, which not only simplifies the expression, it also disposes of the unspecified point  P.

End result is:  Translated line equation is  ax + by + ‘newc’ =0,  that is,  ax + by + c – (ap + bq) = 0

and the job is done for ALL lines, even the vertical ones, and ALL translations. Also we can be sure that we know what has happened to ALL the points on the line.

I am not going to check this with the numerical example, you are !

Leave a comment

Filed under algebra, geometry, math, teaching

Needs, and “Buying In” versus “Selling Out”

Ouch !

Leave a comment

Filed under Uncategorized

Mercedes Schneider Transcribes Yong Zhao’s NPE Speech

This speech is a stunning analysis of the wrong path the US is following, educationally.’Just one quote:
” I’ve always said American schools do not teach creativity better than any Asian systems; we kill it less successfully. “

Diane Ravitch's blog

Mercedes Schneider has transcribed Yong Zhao’s wonderful speech to the second annual conference of the Network for Public Education. This is the last of five posts; it includes links to all the previous transcritions.

If you enjoy the speech, be sure to watch the video (link included), so you can see Yong’s ingenious use of visuals.

View original post

1 Comment

Filed under Uncategorized

Angle between two lines in the plane……Vector product in 3D…….connections???????

So I was in the middle of converting my geometry application Geostruct (we used to call them programs) into javascript

 get it here with the introduction .doc file here

when I decided that the “angle between two lines” routine needed a rewrite. Some surprises ensued !

angle between two lines pic1

Two lines,  ax + by + c  = 0  and  px + qy + r = 0

Their slopes (gradients) are  -a/b = tan(θ)  and  -p/q = tan(φ)

The angle between the lines is  φ – θ,

so it would be nice to know something about  tan(φ – θ)

Back to basics, where  tan(φ – θ) = sin(φ– θ)/cos(φ– θ),

and we have the two expansions

sin(φ– θ) = sin(φ)cos(θ) – cos(φ)sin(θ)   and

cos(φ– θ) = cos(φ)cos(θ) + sin(φ)sin(θ)

So we have  tan(φ – θ) = (sin(φ)cos(θ) – cos(φ)sin(θ))/( cos(φ)cos(θ) + sin(φ)sin(θ))

Dividing top and bottom by  cos(φ)sin(θ)  and skipping some tedious algebra we get

tan(φ – θ)   =  (tan(φ) – tan(θ))/(1 +  tan(φ)tan(θ))

This is where the books stop, which turns out to be a real shame !

Going back to the two lines and their equations, the two lines

ax + by = 0  and  px + qy = 0

have the same angle between them (some things are toooo obvious)

Things are simpler if we look at these two lines through the origin when they both have positive slope.

Take b and q as positive and write the equations as   ax – by = 0  and  px – qy = 0

Then the point whose coordinates are (b,a) lies on the first and (q,p) lies on the second.

angle between two lines pic2

Also, the slopes of the two lines are now  a/b , tan(θ)   and  p/q , tan(φ)

Let us put these into the  tan(φ – θ)   equation above, and once more after tedious algebra

tan(φ – θ)  = (bp – aq)/(ap + bq)

which is a very nice formula for the tan of the angle between two lines.

This is ok if we are interested just in “the angle between the lines”,  but if we are considering rotations, and one of the lines is the “first” one, then the tangent is inadequate. We need both the sine and the cosine of the angle to establish size AND direction (clockwise or anticlockwise).

The formula above can be seen as showing  cos(φ– θ)  as  (ap + bq) divided by something

and  sin(φ– θ)  as  (bp – aq) divided by the same something.

Calling the something  M  it is fairly clear that    (ap + bq)2 + (bp – aq) 2 = M2

and more tedious algebra and some “observation and making use of structure” gives

M= (a2 + b2)(p2 + q2)

and we now have

sin(φ– θ)  = (bp – aq)/M  and  cos(φ– θ) = (bq + ap)/M

and M is the product of the lengths of the two line segments, from the origin to (b,a) and from the origin to (q,p)

It was at this point that I saw M times the sine of the “angle between” as twice the well known formula for the area of a triangle. “half a b sin(C)”, or, if you prefer, the area of the parallelogram defined by the two line segments.

Suddenly I saw all this in 2D vector terms, with bq + ap being the dot product of (b,a) and (q,p) , and bp – aq as being part of the definition of the 3D vector or cross product, in fact the only non zero component (and in the z direction), since in 3D terms our two vectors lie in the xy plane.

Why is the “vector product” not considered in the 2D case ??? It is simpler, and looking at the formula for sine , above, we have a 2D interpretation of the “vector”or cross product as twice the area of the triangle formed by (b,a) and (q,p). (just as in the standard 3D definition, but treated as a scalar).

So “bang goes” the common terms, scalar product for c . d  and vector product for  c X d

Dot product and cross product are much better anyway, and a bit of ingenuity will lead you to the reason for the word “cross”.

This is one of the things implemented using this approach:

gif rolling circle

Anyway, the end result of all this, for rotating points on a circle, was a calculation process which did not require the actual calculation of any angle. No arctan( ) !

Leave a comment

Filed under geometry, language in math, teaching

John Oliver Demolishes Standardized Testing Industry

Just watch this.

J. Giambrone

My Posts  |  Reblogs  |  Films

View original post

Leave a comment

Filed under Uncategorized

Reformers Save Schools from Parents

I love satire.


Federal agents raided the homes and classrooms of hundreds of parents, teachers, and educational “advocates” today because of their involvement with the “opt-out movement.” This illegal act of defiance has cost millions in tax payer’s money and now the feds as well as state education officials are cracking down.

Among the charges these people face are endangering the welfare of minors, insubordination, and churlishness.

Mr. Glynn of Brookhaven Elementary School was removed earlier this morning from his school’s playground in which he was wasting valuable time for rigorous learning to play soccer with his class. It took officials a while to find him as they assumed he would be in the teachers’ lounge during his lunch break.

Arne Duncan, Secretary of Education was outraged over the number of parents who refused the tests in New York. “We made it clear that schools are failing,” he said. “We had scores, scatter plots…

View original post 1,261 more words

Leave a comment

Filed under Uncategorized