# Monthly Archives: April 2017

## Geometry and Numbers – negative ones – “a minus times a minus is a plus”

To accommodate positive and negative numbers we need two extended number lines, with their zeros at the same place

Then multiplication of two negative numbers will always give a positive result, following the same geometrical structure.

The start, where the multiplier begins at 1

Now the 1 connects with the multiplicand -3

The multiplier is now placed at -2

6

And the parallel line from -2 connects to the 6 on the target line

This is so geometrical, and there is no “funny business”. None of the “ought to be 6”. No stuff about the distributive law.

The only geometry needs the Pythagoras theorem, and this will be the next post.

## Geometry and Numbers, not the counting sort

A number line is generally a piece of straight line with a starting point, labeled 0, and equally spaced points labeled 1 and 2 and 3 and 4 and so on till the paper runs out.

The value of a number is the distance from the zero point to the numbered point, in units of the equal spacing.

It is really much easier to draw one of these !

Two parallel number lines, same scale.

Notice that the zero points do not have to be in the same vertical line.

### Subtraction

To get the symbolic form 7 – 2 = 5 we start with 0 on the target line (now the upper line) and join it to the 2 on the subtrahend line. (arrow down) (needs a nicer word here)

Then from the 7 on the subtrahend line we produce the line from 7 parallel to the 0 to 2 line. Then “arrow up” to the target line

Magic ! The result is 5 on the target line.

I like the picture, but the subtraction words are a mess.

### Multiplication

We need two number lines, but since multiplication is  “proportional” they will now be crossing, and the common point is labeled 0.

Also, the labels are “target” and “multiplier” and each line has its own scale.

### Bonus: Nomograms, with lines.

The first is a simple calculator, with A + B = Sum

The second one calculates parallel resistances

Filed under arithmetic, education, geometry, math, nomogram, Number systems, Uncategorized

## sin(2x) less than or equal to 2sin(x), for smallish x (!)

Once upon a time, when I was deep into trigonometry, I followed the trail of sine and cosine sums, with sin(A + B) = sin(A)cos(B) + cos(A)sin(B).
Then two more:
sin(A) + sin(B) = 2sin((A + B)/2)cos((A – B)/2)
and 2sin(A)cos(B) = sin(A + B) + sin(A – B)

Being unable to remember these last formulae (there are 8 altogether) I learned the basic one and derived, over and over again, the others.
In all of this I was never able to derive the basic formula until de Moivre’s theorem appeared.
So I had another go with trig and the simple version, and this is the result:

Aim of the game : sin(2x) = 2sin(x)cos(x)
First diagram:This does not look promising !
But what about sensible labelling –
Second diagram:

The vertical from F meets AD in J
and the line from F at right angles to AB meets AB in K.
So we have two pairs of congruent triangles, BH and HD are both equal to sin(x),
and BHD is A STRAIGHT LINE
Final diagram:
Now the vertical from B is sin(2x)

so sin(2x)/(2sin(x)) is the ratio which should be cos(x)

Fix it