# Category Archives: transformations

## Matrix multiplication without tears!

My dad figured this out years ago.

The string method work for all matrices, and it is at least ten times quicker to “do” than to “write about”.

1 Comment

Filed under algebra, education, math, teaching, transformations, Uncategorized

## Linear transformations, geometrically

Following a recent blog post relating a transformation of points on a line to points on another line to the graph of the equation relating the input and output I thought it would be interesting to explore the linear and affine mappings of a plane to itself from a geometrical construction perspective.

It was ! (To me anyway)

These linear mappings  (rigid and not so rigid motions) are usually  approached in descriptive and manipulative  ways, but always very specifically. I wanted to go directly from the transformation as equations directly to the transformation as geometry.

Taking an example, (x,y) maps to (X,Y) with the linear equations

X = x + y + 1 and Y = -0.5x +y

it was necessary to construct a point on the x axis with the value of X, and likewise a point on the y axis with the value of Y. The transformed (x,y) is then the point (X,Y) on the plane.

The construction below shows the points and lines needed to establish the point(X,0), which is G in the picture, starting with the point D as the (x,y)

The corresponding construction was done for Y, and the resulting point (X,Y) is point J. Point D was then forced to lie on a line, the sloping blue line, and as it is moved along the line the transformed point J moves on another line

Now the (x,y) point (B in the picture below, don’t ask why!) is forced to move on the blue circle. What does the transformed point do? It moves on an ellipse, whose size and orientation are determined by the actual transformation. At this point matrix methods become very handy.(though the 2D matrix methods cannot deal with translations)

All this was constructed with my geometrical construction program (APP if you like) called GEOSTRUCT and available as a free web based application from

http://www.mathcomesalive.com/geostruct/geostructforbrowser1.html

The program produces a listing of all the actions requested, and these are listed below for this application:

Line bb moved to pass through Point A
New line cc created, through points B and C
New Point D
New line dd created, through Point D, at right angles to Line aa
New line ee created, through Point D, at right angles to Line bb
New line ff created, through Point D, parallel to Line cc
New point E created as the intersection of Line ff and Line aa
New line gg created, through Point E, at right angles to Line aa
New line hh created, through Point B, at right angles to Line bb
New point F created as the intersection of Line hh and Line gg
New line ii created, through Point F, parallel to Line cc
New point G created as the intersection of Line ii and Line aa

G is the X coordinate, from X = x + y + 1 (added by me)

New line jj created, through Point G, at right angles to Line aa
New line kk created, through Point D, at right angles to Line cc
New point H created as the intersection of Line kk and Line bb
New point I created, as midpoint of points H and B
New line ll created, through Point I, at right angles to Line bb
New point J created as the intersection of Line ll and Line jj

J is the Y coordinate, from Y = -x/2 + y  (added by me)
and K is the transformed point (X,Y) Point J chosen as the tracking point (added by me)

New Line mm
Point D moved and placed on Line mm

1 Comment

Forecasting the future of “education”, by Eli Horowitz

Prescient ??????

Filed under education, future, horrors, humor, satire, school, transformations, Uncategorized

## “Shear”, the forgotten transformation.

Transformations of the plane are many and various.
The “nice” ones are “rigid motions”, and this term includes rotations, reflections and translations. The shape and the size of a geometrical object are not altered by a rigid motion.
There are also “shape preserving” transformations, called “dilations”, in which an object is stretched or shrunk equally in all directions.
An often overlooked transformation is the “shear”, in which there is a fixed line, and points not on that line are pushed parallel to the line in proportion to their distance from the line. Think of a stack of paper,perfectly stacked, and then pushed sideways so that the side of the pile is still flat. You will see a parallelogram at the front of the pile.
A shear will change the direction of a line, turn a rectangle into a parallelogram and turn a circle into an ellipse,
BUT
the area of any closed figure does not change at all.

Here is the static picture of a fixed point J, a fixed line, the x-axis, and a set of points on the horizontal line through A.
Also two triangles, LND and LDF, which are going to be sheared

And here is the shearing in action, for varying amounts of shear, determined by the value of k.

Notice that triangle LMN changes a lot, and its area changes, but the areas of triangles LND and LDF do not change at all.
Not shown is a rectangle and a circle, which would change into a parallelogram and an ellipse, but their areas will not change with a shear.

For more on this go back to my Christmas post: